vi-et. Mr. Duan – Thư viện Đề thi và Kiểm tra Đề thi Toán Hình học lớp 9

Nội dung bài được Kho_đề_thi Đề thi Toán Hình học lớp 9 xin thu thập lại các sĩ tử về vi-et. Mr. Duan, nội dung được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

Từ bài toán đơn giản không giải phương trình tính tổng và tích 2 nghiệm của phương trình bậc 2 , học sinh có phương tiện là hệ thức Vi – ét để tính toán . Hệ thức còn giúp học sinh xét dấu 2 nghiệm của phương trình mà khong biết cụ thể mỗi nghiệm là bao nhiêu .
Giải và biện luận phương trình bậc 2 có chứa tham số là loại toán khó . Tiếp tục bài toán này thường kèm theo yêu cầu tính giá trị biểu thức , quan hệ giữa 2 nghiệm , các phép tính trên 2 nghiệm … của phương trình. Việc tính mỗi nghiệm của phương trình theo công thức nghiệm là vô cùng khó khăn vì phương trình đang chứa tham số . Trong trường hợp đó hệ thức Vi – ét là 1 phương tiện hiệu quả giúp học sinh giải loại toán này .
Các bài toán cần áp dụng hệ thức Vi – ét đa dạng có mặt trong nhiều kỳ thi quan trọng như thi học kỳ 2, thi tuyển sinh vào lớp 10 , thi vào các trường chuyên lớp chọn …Trong bài viết này , tôi hy vọng đóng góp thêm 1 số kinh nghiệm hướng dẫn học sinh làm quen và tiến tới giải tốt các bài cần áp dụng hệ thức Vi – ét
A) Kiến thức cơ bản :
1) Nếu phương trình bậc hai ax+ bx + c = 0 ( a 0 ) có 2 nghiệm phân biệt thì tổng và tích hai nghiệm đó là:
S = và P =
2 ) Tính nhẩm nghiệm
a ) Nếu a + b + c = 0 thì phương trình ax+ bx + c = 0 ( a 0 ) có các nghiệm số là
b ) Nếu a – b + c = 0 thì phương trình ax+ bx + c = 0 ( a 0 ) có các nghiệm số là
3 ) Tìm 2 số biết tổng và tích của chúng
Nếu 2 số u và v có tổng u + v = S và tích u.v = P thì u và v là 2 nghiệm của phương trình bậc hai :

B ) Bài tập áp dụng và bài tập phát triển , nâng cao
1 ) Loại toán xét dấu nghiệm của phương trình mà không giải phương trình
Bài tập 1: Không giải phương trình cho biết dấu các nghiệm ?
a)
b)
c)
Giải
Theo hệ thức Vi – ét có S =
P =
Vì P >0 nên 2 nghiệm xvà xcùng dấu
S > 0 nên 2 nghiệm cùng dấu dương
Theo hệ thức Vi – ét có P = nên 2 nghiệm cùng dấu
S = nên 2 nghiệm cùng dấu âm
c) P = nên 2 nghiệm trái dấu
S =

Bài tập 2 : Cho phương trình (1)
Chứng minh rằng phương trình luôn có 2 nghiệm trái dấu với mọi giá trị của m 0 . Nghiệm mang dấu nào có giá trị tuyệt đối lớn hơn ?
Giải
Ta có a = 1 >0 , c = – m0 với mọi m 0
Vì a , c trái dấu nên phương trình (1) luôn luôn có 2 nghiệm phân biệt . Theo hệ thức Vi – ét : P = < 0 . Do đó và trái dấu
S = nên nghiệm dương có giá trị tuyệt đối lớn hơn
Bài tập 3:
Cho phương trình (1) (với m là tham số)
a) Giải phương trình trên với m = 2
b) Chứng minh rằng phương trình đã cho có 2 nghiệm trái dấu m
c) Gọi 2 nghiệm của phương trình đã cho là xxTìm m để biểu thức
đạt giá trị lớn

Trả lời

Email của bạn sẽ không được hiển thị công khai.