TUYỂN SINH TOÁN 10 (HÀ NỘI) – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Nội dung bài được KHODETHI Đề thi Toán Đại số lớp 9 xin tổng hợp lại bạn đọc về TUYỂN SINH TOÁN 10 (HÀ NỘI), thông tin được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

1:
1/ Rút gọn

2/ Với x = 9 ta có . Vậy
3/
Vậy với 0 ≤ x < 100 và x ≠ 25 thì A < 1/3
Bài 2
Gọi x là khối lượng hàng chở theo định mức trong 1 ngày của đội ( x >0, tấn)
Số ngày quy định là ngày
Do chở vượt mức nên số ngày đội đã chở là
khối lượng hàng đội đã chở được là

Giải ra x = 20 và x = – 35 ( loại)
Vậy số ngày đội phải chở theo kế hoạch là 140:20=7 ( ngày)
Bài 3:
1/ Với m = 1 ta có (d): y = 2x + 8
Phương trình hoành độ điểm chung của (P) va (d) là
x2 = 2x + 8
x2 – 2x – 8 = 0
Giải ra x = 4 =>y = 16
x = -2 => y = 4
Tọa độ các giao điểm của (P) và (d) là (4 ; 16) và (-2 ; 4)
2/ Phương trình hoành độ điểm chung của (d) và (P) là
x2 – 2x + m2 – 9 = 0 (1)
Để (d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung thì phương trình (1) có hai nghiệm trái dấu
ac < 0
m2 – 9 < 0
(m – 3)(m + 3) < 0
Giải ra có – 3 < m < 3
Bài 4
1/ Xét tứ giác AIEM có
góc MAI = góc MEI = 90o.
=>góc MAI + góc MEI = 180o.
=>tứ giác AIEM nội tiếp
2/ Xét tứ giác BIEN có
góc IEN = góc IBN = 90o.
góc IEN + góc IBN = 180o.
tứ giác IBNE nội tiếp
góc ENI = góc EBI = ½ sđ AE (*)
Do tứ giác AMEI nội tiếp
=>góc EMI = góc EAI = ½ sđ EB (**)
Từ (*) và (**) suy ra
góc EMI + góc ENI = ½ sđ AB = 90o.
3/ Xét tam giác vuông AMI và tam giác vuông BIN có
góc AIM = góc BNI ( cùng cộng với góc NIB = 90o)
(AMI ~ ( BNI ( g-g)

AM.BN = AI.BI
4/ Khi I, E, F thẳng hàng ta có hình vẽ
Do tứ giác AMEI nội tiếp
nên góc AMI = góc AEF = 45o.
Nên tam giác AMI vuông cân tại A
Chứng minh tương tự ta có tam giác BNI vuông cân tại B
AM = AI, BI = BN
Áp dụng pitago tính được

Vậy ( đvdt)

5:

Áp dụng cô si cho ba số ta có
’ ra khi x = 1/2
’ ra khi x = 1/2

giỏ M 2011 khi M = 1/2

Trả lời

Email của bạn sẽ không được hiển thị công khai.