TUYỂN SINH TOÁN 10 (ĐẮK LẮK 2) – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Sau đây kho đề thi Đề thi Toán Đại số lớp 9 xin thu thập lại bạn đọc về TUYỂN SINH TOÁN 10 (ĐẮK LẮK 2), bài được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

SỞ GD VÀ ĐT ĐAKLAK
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC 2011 – 2012

ĐỀ CHÍNH THỨC

Môn: TOÁN
Thời gian: 120 phút (không kể thời gian giao đề)

Ngày thi: 22 tháng 6 năm 2011
Bài 1: (2,0 điểm)

Bài 2: (2,0 điểm)
.
Bài 3: (1,5 điểm)

Bài 4: (3,5 điểm)
Cho tam giác ABC có ba góc nhọn và nội tiếp đường tròn . Hai đường cao BD và CE của tam giác ABC cắt nhau tại điểm H. Đường thẳng BD cắt đường tròn tại điểm thứ hai P; đường thẳng CE cắt đường tròn tại điểm thứ hai Q. Chứng minh:

HƯỚNG DẪN GIẢI:
Câu 1:
1/a/ 9×2+3x-2=0; =81,phương trình có 2 nghiệm x1=;x2=
b/ đặt x2=t (t0) pt đã cho viết được t2+7t-18=0 (*); pt (*) có t=-9 (loại);t=2
với t=2 pt đã cho có 2 nghiệm
2/đồ thị y=12x+(7-m) cắt trục tung tại điểm A(0;7-m); đồ thị y=2x+(3+m) cắt trục tung tại điểm B(0;3+m) theo yêu cầu bài toán AB khi 7-m=3+m tức là m=2.
Câu 2:
1/

2/ a/

b/ (thoả mãn đk )
Câu 3:
1/ Khi m=1 ta có hệ pt: rút y từ (2) y=2x+1 thế vào pt (1) được x=0, suy ra y=1
Vậy hệ có nghiệm (0;1)
2/
P đạt GTNN bằng khi
Câu 4:

Từ giả thiết ta có: suy ra E,D nhìn B,C dưới 1 góc vuông,nên tứ giác BEDC nội tiếp được trong 1 đường tròn.
Vì tam giác HBC và HPQ đồng dạng (góc góc)nên HQ.HC=HP.HB
BEDC nội tiếp đường tròn suy ra từ câu 1/ TA CÓ :
Suy ra (2 GÓC ĐỒNG VỊ SUY RA ĐPCM)
OP=OQ (vì bằng bán kính đường tròn O) (1)
(GÓC NỘI TIẾP CÙNG CHẮN CUNG ED) suy ra QA=PA Vậy A và O cách đều P,Q nên suy ra đpcm.
Bài 5: (1,0 điểm)

———- Hết ———-

Trả lời

Email của bạn sẽ không được hiển thị công khai.