Trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông

Nội dung bài được kho đề thi Luyện thi THPT, Nguyên hàm – Tích phân, Toán 12 xin tổng hợp lại các bạn học sinh về Trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông, bài được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

Tài liệu gồm 122 trang tuyển chọn bài tập trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng có lời giải chi tiết do thầy Đặng Việt Đông (Giáo viên trường THPT Nho Quan A – Ninh Bình) biên soạn, trong mỗi phần đều bao gồm tóm lược lý thuyết chung và bài tập trắc nghiệm đi kèm được trích từ các đề thi thử môn Toán, tài liệu thích hợp cho học sinh khá, giỏi để ôn luyện đạt điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia.

Trích dẫn tài liệu trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông:
+ Cho a, b là hai số thực dương. Gọi (K) là hình phẳng nằm trong góc phần tư thứ hai, giới hạn bởi parabol y = ax^2 và đường thẳng y = -bx. Biết thể tích khối tròn xoay tạo được khi quay (K) xung quanh trục hoành là một số không phụ thuộc vào giá trị của a và b. Khẳng định nào sao đây là đúng?
(adsbygoogle = window.adsbygoogle || []).push();
+ Cho tích phân C = e^x/√(e^x + 3)dx cận từ a đến b, trong đó a là nghiệm của phương trình 2^(x^2 + 1) = 2, b là một số dương và b > a. Gọi A bằng tích phân x^2dx cận từ 1 đến 2. Tìm chữ số hàng đơn vị của b sao cho C = 3A.
+ Khi tính nguyên hàm 1/√(2x + 1)(x + 1)^3 dx người ta đặt t = g(x) (một hàm biểu diễn theo biến x) thì nguyên hàm trở thành 2dt. Biết g(4) = 3/√5, giá trị của g(0) + g(1) là?

Trả lời

Email của bạn sẽ không được hiển thị công khai.