Thi vao THPT TP-HCM (De +Dap an) – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Tổng hợp bài KHODETHI Đề thi Toán Đại số lớp 9 xin tổng hợp lại các sĩ tử về Thi vao THPT TP-HCM (De +Dap an), nội dung được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

Các đề tuyển sinh 10 của TP HỒ CHÍ MINH

KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2007-2008 KHÓA NGÀY 20-6-2007 MÔN THI: TOÁN
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Câu 1: (1, 5 điểm) Giải các phương trình và hệ phương trình sau:
a) x2 – 2x + 4 = 0 b) x4 – 29×2 + 100 = 0 c)
Câu 2: (1, 5 điểm) Thu gọn các biểu thức sau:
a) b)
Câu 3: (1 điểm) Một khu vườn hình chữ nhật có diện tích bằng 675 m2 và có chu vi bằng 120 m. Tìm chiều dài và chiều rộng của khu vườn. Câu 4: (2 điểm) Cho phương trình x2 – 2mx + m2 – m + 1 = 0 với m là tham số và x là ẩn số.
a) Giải phương trình với m = 1. b) Tìm m để phương trình có hai nghiệm phân biệt x1 ,x2. c) Với điều kiện của câu b hãy tìm m để biểu thức A = x1 x2 – x1 – x2 đạt giá trị nhỏ nhất.
Câu 5: (4 điểm) Cho tam giác ABC có ba góc nhọn (AB < AC). Đường tròn đường kính BC cắt AB, AC theo thứ tự tại E và F. Biết BF cắt CE tại H và AH cắt BC tại D.
a) Chứng minh tứ giác BEFC nội tiếp và AH vuông góc với BC. b) Chứng minh AE.AB = AF.AC. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và K là trung điểm của BC. Tính tỉ số khi tứ giác BHOC nội tiếp. d) Cho HF = 3 cm, HB = 4 cm, CE = 8 cm và HC >HE. Tính HC.

Gợi ý một phương án bài giải đề thi tuyển sinh lớp 10 THPT Năm học 2007-2008
Câu 1:
a) Ta có Δ’ = 1 nên phương trình có 2 nghiệm phân biệt là x1 = 5 – 1 và x2 = 5 + 1. b) Đặt t = x2 ≥ 0, ta được phương trình trở thành t2 – 29t + 100 = 0 t = 25 hay t =2. * t = 25 x2 = 25 x = ± 5. * t = 4 x2 = 4 x = ± 2. Vậy phương trình đã cho có 4 nghiệm là ± 2; ±5. c)
Câu 2:
a) b)
Câu 3:
Gọi chiều dài là x (m) và chiều rộng là y (m) (x >y > 0). Theo đề bài ta có: Ta có: (*) x2 – 60x + 675 = 0 x = 45 hay x = 15. Khi x = 45 thì y = 15 (nhận) Khi x = 15 thì y = 45 (loại) Vậy chiều dài là 45(m) và chiều rộng là 15 (m)
Câu 4:
Cho phương trình x2 – 2mx + m2 – m + 1 = 0 (1) a) Khi m = 1 thì (1) trở thành: x2 – 2x + 1 = 0 (x – 1)2 = 0 x = 1. b) (1) có hai nghiệm phân biệt x1, x2 Δ’ = m – 1 >0 m > 1. Vậy (1) có hai nghiệm phân biệt x1, x2 m > 1. c) Khi m > 1 ta có: S = x1 + x2 = 2m và P = x1x2 = m2 – m + 1 Do đó: A = P – S = m2 – m + 1 – 2m = m2 – 3m + 1 = − ≥ –. Dấu “=” xảy ra m= (thỏa điều kiện m > 1) Vậy khi m = thì A đạt giá trị nhỏ nhất và GTNN của A là –.
Câu 5:
* Ta có E, F lần lượt là giao điểm của AB, AC với đường tròn đường kính BC. Tứ giác BEFC nội tiếp đường tròn đường kính BC. * Ta có (góc nội tiếp chắn nửa đường tròn) BF, CE là hai đường cao của ΔABC. H là trực tâm của Δ ABC. AH vuông góc với BC. b) Xét Δ AEC và Δ AFB có: chung và Δ AEC đồng dạng với Δ AFB c) Khi BHOC nội tiếp ta có: mà và (do AEHF nội tiếp) Ta có: K là trung điểm của BC, O là tâm đường tròn ngoại tiếp ABC

Trả lời

Email của bạn sẽ không được hiển thị công khai.