Thi vao THPT Thanh Hoa (De +Dap an) – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Tổng hợp bài KHODETHI Đề thi Toán Đại số lớp 9 xin thu thập lại các sĩ tử về Thi vao THPT Thanh Hoa (De +Dap an), bài được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
THANH HOÁ Năm học 2010 – 2011
Môn thi: Toán
Ngày thi: 30 tháng 6 năm 2010
Thời gian làm bài: 120phút
——————————————————–
Bài I (2,0 điểm)
Cho phương trình : x2 + nx – 4 = 0 (1) (với n là tham số)
1. Giải phương trình (1) khi n = 3
2. Giả sử x1,x2 là nghiệm của phương trình (1),tìm n để :
x1(x22 +1 ) + x2( x12 + 1 ) >6
Bài II (2,0 điểm)
Cho biểu thức với a > 0;
1.Rút gọn A
2.Tìm a để biểu thức A nhận giá trị nguyên.
Bài III (2,0 điểm) Trong mặt phẳng toạ độ Oxy
Cho parabol (P): y = x2 và các điểm A,B thuộc parabol (P) v ới xA = -1,xB = 2
1.T ìm to ạ đ ộ c ác đi ểm A,B v à vi ết ph ư ơng tr ình đ ư ờng th ẳng AB.
2. T ìm m đ ể đ ư ờng th ẳng (d) : y = (2m2 – m)x + m + 1 (v ới m l à tham s ố ) song song v ới đ ư ờng th ẳng AB.
Bài IV (3,0)
Cho tam gi ác PQR c ó ba g óc nh ọn n ội ti ếp đ ư ờng tr òn t âm O,c ác đ ư ờng cao QM,RN c ủa tam gi ác c ắt nhau t ại H.
1.Ch ứng minh t ứ gi ác QRMN l à t ứ gi ác n ội ti ếp trong m ột đ ư ờng tr òn.
2. K éo d ài PO c ắt đ ư ờng tr òn O t ại K.Ch ứng minh t ứ gi ác QHRK l à h ình b ình h ành.
3. Cho c ạnh QR c ố đ ịnh,Pthay đ ổi tr ên cung l ớn QR sao cho tam gi ác PQR lu ôn nh ọn.X ác đ ịnh v ị tr í đi ểm P đ ể di ện t ích tam gi ác QRH l ớn nh ất.
Bài V ( 1,0 điểm)
Cho x,y l à c ác s ố d ư ơng tho ả m ãn : x + y = 4
T ìm gi á tr ị nh ỏ nh ất c ủa :
——————— Hết———————

Họtênthísinh:…………………………………………………….Sốbáodanh:…………………………………..
Họ tên, chữ ký của giám thị 1: Họ tên, chữ ký của giám thị 2:

Đáp án chấm điểm

Bài I)
Với n = 3, ta có pt: x2 + 3x – 4 = 0
pt có a+b++c=0 nên x1 = 1, x2 = -4
2. pt đã cho có với mọi n, nên phương trình luôn có hai nghiệm phân biệt x1, x2.
Áp dụng hệ thức Vi et ta có:
x1 + x2 = n
x1x2 = -4
Ta có:
Bài 2: 1) Rút gọn biểu thức được: A=
2. Biểu thức A đạt giá trị nguyên ( là ước của 4.
do 3 nên = 4
( a=1
Bài 3:
1. A(-1; 1); B(2; 4).
Phương trình đường thẳng AB là: y = x+2.
2. Đường thẳng (d) song song với đường thẳng AB khi:

Bài 4.

Tứ giác QRMN có :

Tứ giác QRMN nội tiếp đường tròn đường kính QR.
Ta có: ( góc nội tiếp chắn nửa đường tròn)
suy ra:PQKQ, mà RHPQ
KQ//RH(1)
Chwngs minh tương tự ta cũng có:
QH//KR(2)
Từ (1) và (2) suy ra tứ giác QHRK là hình bình hành.
Theo câu 2, tứ giác QHRK là hình bình hành nên:

Từ K kẻ KIQR. Ta có:

Diện tích tam giác QKR lớn nhất khi KI lớn nhất( K là điểm chính giữa của cung nhỏ QR.
Khi đó P là điểm chính giữa của cung lớn QR.

Bài 5
Từ x+y=4
Áp dụng BĐT Côsi ta có: xy
Do đó
Mặt khác: x2+y2=-2xy=16-2xy=8( do xy4)
Vậy P
Do đó : MinP= , đạt được khi x=y=2.

Hỏi và đáp