thi lop 10nawm 2015(đề và đáp án ngắn gon nhẩt) – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Những bài tập mà kho đề thi Đề thi Toán Đại số lớp 9 xin thu thập lại các bạn học sinh về thi lop 10nawm 2015(đề và đáp án ngắn gon nhẩt), nội dung được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT
TP.HCM Năm học: 2015 – 2016

Bài 1: (2 điểm)
Giải các phương trình và hệ phương trình sau:
a)
b)
c)
d)
Bài 2: (1,5 điểm)
a) Vẽ đồ thị (P) của hàm số và đường thẳng (D): trên cùng một hệ trục toạ độ.
b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3: (1,5 điểm)
Thu gọn các biểu thức sau:

Bài 4: (1,5 điểm)
Cho phương trình (1) (x là ẩn số)
a) Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị m
b) Định m để hai nghiệm của (1) thỏa mãn
Bài 5: (3,5 điểm)
Cho tam giác ABC (AB < AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC.
a) Chứng minh : và AH.AD =AE.AC
b) Chứng minh EFDO là tứ giác nội tiếp
c) Trên tia đối của tia DE lấy điểm L sao cho DL = DF. Tính số đo góc BLC
d) Gọi R, S lần lượt là hình chiếu của B,C lên EF. Chứng minh DE + DF = RS

————– HẾT ————-
Bài 1: (2 điểm)
b) (2)

c)
Đặt u = x2 pt thành :
(loại) hay u = 6
Do đó pt

d)

Bài 2: a) Đồ thị: Lưu ý: (P) đi qua O(0;0),
(D) đi qua
b) PT hoành độ giao điểm của (P) và (D) là
( (a-b+c=0)
y(-1) = 1, y(2) = 4
Vậy toạ độ giao điểm của (P) và (D) là
Bài 3:

Với ta có :

= 35
Câu 4:Cho phương trình (1) (x là ẩn số)
a) Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị m

Vậy phương trình có 2 nghiệm phân biệt với mọi m
b) Định m để hai nghiệm của (1) thỏa mãn
Vì a + b + c = nên phương trình (1) có 2 nghiệm .
Từ (1) suy ra :

Câu 5a)Do H trực tâm
Ta có tứ giác HDCE nội tiếp
Xét 2 tam giác đồng dạng EAH và DAC (2 tam giác vuông có góc A chung)
(đpcm)
b) Do AD là phân giác của nên
Vậy tứ giác EFDO nội tiếp (cùng chắn cung )
c) Vì AD là phân giác DB là phân giác
F, L đối xứng qua BC đường tròn tâm O
Vậy là góc nội tiếp chắn nửa đường tròn tâm O

d) Gọi Q là giao điểm của CS với đường tròn O.
Vì 3 cung BF, BL và EQ bằng nhau (do kết quả trên)
Tứ giác BEQL là hình thang cân nên hai đường chéo BQ và LE bằng nhau.
Mà BQ = RS, LE = DL + DE = DF + DE suy ra điều phải chứng minh.

SỞ GIÁO DỤC VÀ ĐÀO TẠO
BÌNH ĐỊNH

KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC 2015 – 2016

Bài 1: (2,0 điểm).
a) Giải hệ phương trình:
b) Rút gọn biểu thức: (với )

Bài 2: (2,0 điểm).Cho phương trình: , m m là tham số
a) Giải phương trình với m = 0
b) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.
c) Tìm giá trị của m để phương trình có hai nghiệm đối nhau.
Bài 3: (2,0 điểm).Trên một vùng biển được xem như bằng phẳng và không có chướng ngại vật. Vào lúc 6 giờ có một tàu cá đi thẳng qua tọa độ X theo hướng Từ Nam đến Bắc với vận tốc không đổi. Đến 7 giờ một

Trả lời

Email của bạn sẽ không được hiển thị công khai.