kho bai tap hinh khong gian – Thư viện Đề thi và Kiểm tra Đề thi Toán Số học lớp 6

Sau đây KHODETHI Đề thi Toán Số học lớp 6 xin thu thập lại các bạn học sinh về kho bai tap hinh khong gian, thông tin được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

Ôn Tập
Tìm giao tuyến của 2 mặt phẳng

Phương pháp:
*Tìm hai điểm chung của hai mặt phẳng ( và (
*Tìm đường thẳng a ( ( và đường thẳng b ( ( sao cho a b = I
thì I là điểm chung của ( và (
1.Cho 4 điểm A,B,C,D không cùng nằm trong một mặt phẳng
a)Chứng minh rằng hai đường thẳng AB và CD chéo nhau
b)Trên các đoạn AB và AD lần lượt lấy các điểm M và N sao cho đường thẳng MN cắt đường thẳng BD tại I.Hãy xét xem điểm I thuộc Mọi mặt phẳng nào ?Tìm giao tuyến của hai mặt phẳng (CMN) và (BCD)
2.Trong mặt phẳng ( cho hai đường thẳng a và b cắt nhau tại O. Gọi c là một đường thẳng cắt ( tại điểm I khác O
a)Xác định giao tuyến của hai mặt phẳng (O,c) và (
b)Gọi M là một điểm trên c khác I.Tìm giao tuyến của hai mặt phẳng (M,a) và (M,b). Chứng minh rằng giao tuyến này luôn luôn nằm trong một mặt phẳng cố định khi M di động trên c
3.Cho hai mặt phẳng ( và ( cắt nhau theo giao tuyến d.Ta lấy hai điểmA ,B thuộc mặt phẳng ( nhưng không thuộc d và một điểm O nằm ngoài ( và (
Các đường thẳng OA, OB lần lượt cắt ( tại A’ và B’.Giả sử đường thẳng AB cắt d tại C
a)Chứng minh rằng ba điểm O,A,B không thẳng hàng
b)Chứng minh rằng ba điểm A’,B’,C thẳng hàng và từ đó suy ra ba đường thẳng AB,A’B’ và d đồng qui
4.Cho tứ diện ABCD.Trên các cạnh AB,AC,BD lần lượt lấy
các điểm M,N,P sao cho MN không //BC, MP không //AD.
Tìm các giao tuyến sau:
a) (MNP)(ABC) b) (MNP)(ABD)
c) (MNP)(BCD) d) (MNP)(ACD)
5.Cho tứ diện ABCD.Trên các cạnh AB,AC lần lượt lấy các điểm M,N sao cho MN không //BC,trong tam giác BCD lấy điểm I. Tìm các giao tuyến sau: a) (MNI)(ABC) b) (MNI)(BCD)
c) (MNI)(ABD) d) (MNI)(ACD)
6.Cho hình chóp S.ABCD có đáy không phải hình thang.Tìm
các giao tuyến sau: a) (SAC)(SBD)
b) (SAB)(SCD) c) (SAD)(SBC)
7.Cho tứ diện ABCD.Trong 2 tam giác ABC và BCD lấy 2
điểm M,N.Tìm các giao tuyến sau:
a) (BMN)(ACD) b) (CMN)(ABD) c) (DMN)(ABC)
8.Cho tứ diện ABCD.Trên cạnh AB lấy điểm I ,trong 2 tam giác BCD và ACD
lần lượt lấy 2 điểm J,K.Tìm các giao tuyến sau:
a) (ABJ)(ACD) b) (IJK)(ACD)
c) (IJK)(ABD) d) (IJK)(ABC)
9.Cho tứ diện ABCD.Gọi I,J là trung điểm của AD và BC
a)Chứng minh rằng IB và JA là 2 đường thẳng chéo nhau
b)Tìm giao tuyến của 2 mặt phẳng (IBC) (JAD)
c)Gọi M là điểmnằm trên đoạn AB;N là điểm nằm trên đoạn
AC .Tìm giao tuyến của 2 mặt phẳng (IBC) (DMN)
10.Cho ba điểm A,B,C không thẳng hàng và một điểm O nằm ngoài mặt phẳng (ABC).Gọi A’,B’,C’ là các điểm lần lượt nằm trên các đường thẳng OA,BO,OC. Giả sử A’B’AB = D , B’C’BC = E , C’A’CA = F. Chứng minh rằng 3 điểm D,E,F thẳng hàng
11.Cho tứ diện ABCD. Gọi I là điểm nằm trên đường thẳng BD nhưng ngoài đoạn BD.Trong mặt phẳng (ABD) ta vẽ một đường thẳng qua I cắt hai đoạn AB và AD lần lượt tại K và L.Trong mặt phẳng (BCD) ta vẽ một đường thẳng qua I cắt hai đoạn CB và CD lần lượt tại M và N
a)Chứng minh rằng 4 điểm K,L,M,N cùng thuộc một mặt phẳng
b)Gọi O1= BNDM ; O2 = BLDK và J = LMKN. Chứng minh rằng ba điểm A,J,O1 thẳng hàng và ba điểm C,J,O2 cũng thẳng hàng
c)Giả sử hai đường thẳng

Hỏi và đáp