Hướng dẫn giải bài toán cực trị số phức – Lương Đức Trọng

Nội dung bài được kho đề thi Số phức, Toán 12 xin thu thập lại các bạn học sinh về Hướng dẫn giải bài toán cực trị số phức – Lương Đức Trọng, bài được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

Thông tin gồm 12 trang được biên soạn bởi tác giả Lương Đức Trọng trình bày 2 phương pháp giải bài toán cực trị số phức – một dạng toán số phức vận dụng cao trong chương trình Giải tích 12 chương 4.

Hai phương pháp được nói đến trong tài liệu đó là:
+ Phương pháp đại số.
+ Phương pháp hình học.

Đây là lớp các bài toán vận dụng cao trong đề thi THPT Quốc gia môn Toán, để giải được dạng toán này, cần nắm vững các lý thuyết sau đây:

Bất đẳng thức tam giác:
+ |z1 + z2| ≤ |z1| + |z2|, dấu “=” khi z1 = kz2 với k ≥ 0
+ |z1 − z2| ≤ |z1| + |z2|, dấu “=” khi z1 = kz2 với k ≤ 0
+ |z1 + z2| ≥ ||z1| − |z2||, dấu “=” khi z1 = kz2 với k ≤ 0
+ |z1 − z2| ≥ ||z1| − |z2||, dấu “=” khi z1 = kz2 với k ≥ 0
(adsbygoogle = window.adsbygoogle || []).push();
2. Công thức trung tuyến: |z1 + z2|^2 + |z1 − z2|^2 = 2(|z1|^2 + |z2|^2)
3. Tập hợp điểm:
+ |z − (a + bi)| = r: Đường tròn tâm I(a; b) bán kính r
+ |z − (a1 + b1i)| = |z − (a2 + b2i)|: Đường trung trực của AB với A(a1; b1), B(a2; b2)
+ |z − (a1 + b1i)| + |z − (a2 + b2i)| = 2a:
– Đoạn thẳng AB với A(a1; b1), B(a2; b2) nếu 2a = AB
– Elip (E) nhận A, B làm hai tiêu điểm với độ dài trục lớn là 2a nếu 2a > AB
Đặc biệt |z + c| + |z − c| = 2a: Elip (E) : x^2/a^2 + y^2/b^2 = 1 với b = √(a^2 − c^2)

Trả lời

Email của bạn sẽ không được hiển thị công khai.