Giải nhanh hình học không gian bằng máy tính Casio – Hà Ngọc Toàn

Tổng hợp bài Kho_đề_thi Hình học không gian, Luyện thi THPT, Tài liệu Casio, Tọa độ không gian Oxyz, Toán 12 xin thu thập lại các bạn học sinh về Giải nhanh hình học không gian bằng máy tính Casio – Hà Ngọc Toàn, nội dung được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

Việc BGD ra đề thi trắc nghiệm đối với môn Toán đa phần đối với học sinh là rất mới nhất là tốc độ để giải quyết các bài toán về hình học không gian. Để giúp các em có cách nhanh nhất giải các bài toán trắc nghiệm thầy biên soạn chuyên đề sử dụng casio giải nhanh hình học không gian, mặc dù ở phần này casio chỉ hỗ trợ chúng ta một phần rất nhỏ nhưng nó cũng giảm bớt được thời gian chọn đáp án, các em chú ý rằng phương pháp này không phải là toàn năng và nhanh nhất để giải toán, có Những bài sử dụng phương pháp truyền thống giải nhanh hơn rất nhiều. Vì thế các em coi phương pháp này là để tham khảo và học hỏi thêm.

Phương pháp tọa độ hóa trong không gian ta cần phải thực hiện được các yêu cầu sau:

+ Bước 1: Chọn hệ trục tọa độ Oxyz thích hợp ( chú ý đến vị trí của gốc O), chọn hệ trục sao cho có 3 đường thẳng đôi một vuông góc với nhau.

+ Bước 2: Xác định tọa độ các điểm có liên quan ví dụ đề bài yêu cầu tính thể tích của khối chop SABC thì chúng ta chỉ cần tìm tọa độ các điểm S;A;B;C và khi xác định tọa độ các điểm ta có thể dựa vào Các yếu tố sau:
(adsbygoogle = window.adsbygoogle || []).push();
– Ý nghĩa hình học của tọa độ điểm khi các điẻm nằm trên cá trục tọa độ, mặt phẳng tọa độ ví dụ điểm A nằm trên truc Ox khi đó A( a;0;0) hay điểm A nằm trên mặt phẳng oxy khi đó A( a;b;0) , chú ý việc xác định tọa độ điểm là quan trọng nhất nên rất cẩn trọng, và việc xác định tọa độ điểm để tìm ra A(x;y;z) thì từ điểm đó ta phải kẻ vuông góc vào các hệ trục tọa độ đã chọn.
– Dựa vào các quan hệ hình học bằng nhau, vuông góc, song song, cùng phương, thẳng hàng, điểm chia đoạn thẳng để tìm tọa độ.
– Xem điểm cần tìm là giao điểm của đường thẳng, mặt phẳng.
– Dựa vào các quan hệ về góc của đường thẳng, mặt phẳng.

+ Bước 3: Sử dụng kiến thức về tọa độ để giải quyết bài toán.

Trả lời

Email của bạn sẽ không được hiển thị công khai.