Đề+ĐA Toán vào 10 Ninh Thuận 12-13 – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Sau đây KHODETHI.ORG Đề thi Toán Đại số lớp 9 xin thu thập lại các sĩ tử về Đề+ĐA Toán vào 10 Ninh Thuận 12-13, bài được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

SỞ GIÁO DỤC ĐÀO TẠO
NINH THUẬN

KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC 2012 – 2013
Khóa ngày: 24 – 6 – 2012
Môn thi: TOÁN
Thời gian làm bài: 120 phút

ĐỀ:

Bài 1: (2,0 điểm)
Giải hệ phương trình:
Xác định các giá trị của m để hệ phương trình sau vô nghiệm:
( m là tham số)
Bài 2: (3,0 điểm)
Cho hai hàm số y = x2 và y = x + 2.
Vẽ đồ thị hai hàm số đã cho trên cùng một hệ trục tọa độ Oxy.
Bằng phép tính hãy xác định tọa độ các giao điểm A, B của hai đồ thị trên (điểm A có hoành độ âm).
Tính diện tích của tam giác OAB (O là gốc tọa độ)
Bài 3: (1,0 điểm)
Tính giá trị của biểu thức H =
Bài 4: (3,0 điểm)
Cho đường tròn tâm O, đường kính AC = 2R. Từ một điểm E ở trên đoạn OA (E không trùng với A và O). Kẻ dây BD vuông góc với AC. Kẻ đường kính DI của đường tròn (O).
Chứng minh rằng: AB = CI.
Chứng minh rằng: EA2 + EB2 + EC2 + ED2 = 4R2
Tính diện tích của đa giác ABICD theo R khi OE =

Bài 5: (1,0 điểm)
Cho tam giác ABC và các trung tuyến AM, BN, CP. Chứng minh rằng:
(AB + BC + CA) < AM + BN + CP < AB + BC + CA

ĐÁP ÁN:

Bài 1: (2,0 điểm)
Giải hệ phương trình:
Hệ phương trình vô nghiệm khi:

Bài 2: (3,0 điểm)
a) Vẽ (d) và (P) trên cùng một hệ trục tọa độ.
x
-2
-1
0
1
2

(P)
4
1
0
1
4

x
– 2
0

y = x + 2(d)
0
2

b) Tọa độ giao điểm của (P) và (d) là nghiệm của hệ phương trình:

Tọa độ các giao điểm của (d) và (P): A (-1;1) và B (2;4)
c) SOAB = .(1+4).3 – .1.1 – .2.4 = 3

Bài 3: (1,0 điểm)
H =
Bài 4: (3,0 điểm)
Chứng minh rằng: AB = CI.

Ta có: BDAC (gt)
= 900 ( góc nội tiếp chắn nửa đường tròn) BDBI
Do đó: AC // BI AB = CI
Chứng minh rằng: EA2 + EB2 + EC2 + ED2 = 4R2
Vì BDAC nên AB = AD

Ta có: EA2 + EB2 + EC2 + ED2 = AB2 + CD2 = AD2 + CD2 = AC2 = (2R)2 = 4R2
Tính diện tích của đa giác ABICD theo R khi OE =
SABICD = SABD + SABIC = .DE.AC + .EB.(BI + AC)
* OE = AE = và EC = + R =
* DE2 = AE.EC = . = DE = . Do đó: EB =
* BI = AC – 2AE = 2R – 2. =
Vậy: SABICD = ..2R + .(+ 2R) = . = (đvdt)
Bài 5: (1,0 điểm)

Cho tam giác ABC và các trung tuyến AM, BN, CP. Chứng minh rằng:
(AB + BC + CA) < AM + BN + CP < AB + BC + CA

Gọi G là trọng tâm của ABC, ta có: GM = AM; GN = BN; GP =CP
Vì AM, BN, CP các trung tuyến, nên: M, N, P lần lượt là trung điểm của BC, AC, AB
Do đó: MN, NP, MP là các đường trung bình của ABC
Nên: MN = AB; NP = BC; MP = AC
Áp dụng bất đẳng thức tam giác, ta có:
* AM < MN + AN hay AM < AB + AC (1)
Tương tự: BN < AB + BC (2)
CP < BC + AC (3)
Từ (1), (2), (3) suy ra: AM + BN

Hỏi và đáp