Đề+ĐA Toán vào 10 Lào Cai 12-13 – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Tắt (X)

Quảng cáo Adsense

Tổng hợp bài Kho_đề_thi Đề thi Toán Đại số lớp 9 xin tổng hợp lại các sĩ tử về Đề+ĐA Toán vào 10 Lào Cai 12-13, thông tin được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO 10 – THPT
TỈNH LÀO CAI NĂM HỌC: 2012 – 2013
MÔN: TOÁN
Thời gian: 120 phút (không kể thời gian giao đề)

Câu I: (2,5 điểm)
1. Thực hiện phép tính:
2. Cho biểu thức: P =
a) Tìm điều kiện của a để P xác định b) Rút gọn biểu thức P.

Câu II: (1,5 điểm)
1. Cho hai hàm số bậc nhất y = -x + 2 và y = (m+3)x + 4. Tìm các giá trị của m để đồ thị của hàm số đã cho là:
a) Hai đường thẳng cắt nhau
b) Hai đường thẳng song song.
2. Tìm các giá trị của a để đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2).

Câu III: (1,5 điểm)
1. Giải phương trình x 2 – 7x – 8 = 0
2. Cho phương trình x2 – 2x + m – 3 = 0 với m là tham số. Tìm các giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn điều kiện

Câu IV: (1,5 điểm)
1. Giải hệ phương trình
2. Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn điều kiện x + y >1.

Câu V: (3,0 điểm) Cho nửa đường tròn tâm O đường kính AB = 2R và tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh AMOC là tứ giác nội tiếp đường tròn.
b) Chứng minh AMDE là tứ giác nội tiếp đường tròn.
c) Chứng mình

——– Hết ———

Giải
Câu I: (2,5 điểm)
1. Thực hiện phép tính:

2. Cho biểu thức: P =
a) Tìm điều kiện của a để P xác định: P xác định khi
b) Rút gọn biểu thức P.
P ==
=
==
Vậy với thì P =
Câu II: (1,5 điểm)
1. Cho hai hàm số bậc nhất y = -x + 2 và y = (m+3)x + 4. Tìm các giá trị của m để đồ thị của hàm số đã cho là:
a) Để hàm số y = (m+3)x + 4 là hàm số bậc nhất thì m + 3 0 suy ra m -3.
Đồ thị của hai hàm số đã cho là hai đường thẳng cắt nhau a a’
-1 m+3m -4
Vậy với m -3 và m -4 thì đồ thị của hai hàm số đã cho là hai đường thẳng cắt nhau.
b) Đồ thị của hàm số đã cho là Hai đường thẳng song song
thỏa mãn điều kiện m -3
Vậy với m = -4 thì đồ thị của hai hàm số đã cho là hai đường thẳng song song.

2. Tìm các giá trị của a để đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2).
Vì đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2) nên ta thay x = -1 và y = 2 vào hàm số ta có phương trình 2 = a.(-1)2 suy ra a = 2 (thỏa mãn điều kiện a 0)
Vậy với a = 2 thì đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2).

Câu III: (1,5 điểm)
1. Giải phương trình x 2 – 7x – 8 = 0 có a – b + c = 1 + 7 – 8 = 0 suy ra x1= -1 và x2= 8

2. Cho phương trình x2 – 2x + m – 3 = 0 với m là tham số. Tìm các giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn điều kiện .
Để phương trình có hai nghiệm x1; x2 thì ’ 0 ( 1 – m + 3 0 ( m 4
Theo viet ta có: x1+ x2 =2 (1) và x1. x2 = m – 3 (2)
Theo đầu bài:

Hỏi và đáp