Đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 – 2020 sở GD&ĐT Hà Nam (Đề chung)

Tổng hợp bài Kho_đề_thi Đề thi tuyển sinh lớp 10 môn Toán xin thu thập lại bạn đọc về Đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 – 2020 sở GD&ĐT Hà Nam (Đề chung), bài được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

KHODETHI.ORG giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề Toán tuyển sinh lớp 10 THPT chuyên năm học 2019 – 2020 sở Giáo dục và Đào tạo Hà Nam (Đề chung – Vòng 1), đề thi được dành cho toàn bộ các thí sinh tham dự kỳ thi, đề gồm 5 bài toán tự luận, thời gian làm bài 120 phút.

Trích dẫn đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 – 2020 sở GD&ĐT Hà Nam (Đề chung):
+ Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x^2 và đường thẳng (d) có phương trình y = mx + 3 (với m là tham số).
1. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B.
2. Gọi x1, x2 lần lượt là hoành độ của A và B. Tính tích các giá trị của m để 2×1 + x2 = 1.
(adsbygoogle = window.adsbygoogle || []).push({});
+ Cho đường tròn (O;R) và điểm A sao cho OA = 3R. Qua A kẻ hai tiếp tuyến AB và AC của đường tròn (O), với B và C là hai tiếp điểm. Kẻ cát tuyến AMN của đường tròn (O) (M nằm giữa hai điểm A và N). Gọi H là giao điểm của OA và BC.
1. Chứng minh tứ giác ABOC nội tiếp.
2. Chứng minh AM.AN = AH.AO.
3. Chứng minh HB là đường phân giác của góc MHN.
4. Gọi I, K lần lượt là hình chiếu của M trên AB và AC. Tìm giá trị lớn nhất của MI.MK khi cát tuyến AMN quay quanh A.

Trả lời

Email của bạn sẽ không được hiển thị công khai.