Đề thử sức trước kỳ thi THPT Quốc gia 2019 môn Toán – Toán Học Tuổi Trẻ (Đề số 3)

Những bài tập mà Kho_đề_thi Đề thi thử môn Toán xin tổng hợp lại quý bạn đọc về Đề thử sức trước kỳ thi THPT Quốc gia 2019 môn Toán – Toán Học Tuổi Trẻ (Đề số 3), dữ liệu được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

Như thường lệ hàng tháng, hôm nay – vào khoảng thời gian giữa tháng 02 năm 2019, tạp chí Toán học Tuổi trẻ đã xuất bản số báo THTT 500 (2-2019) để gửi đến đọc giả cả nước, và trong số báo này, KHODETHI.ORG xin trích dẫn và chia sẻ đến bạn đọc đọc lời giải chi tiết đề THTT lần 2 năm 2019 và đề thử sức trước kỳ thi THPT Quốc gia 2019 môn Toán – Toán Học Tuổi Trẻ (Đề số 3).

Đề thử sức trước kỳ thi THPT Quốc gia 2019 môn Toán – Toán Học Tuổi Trẻ (Đề số 3) được biên soạn bởi thầy Nguyễn Văn Xá – giáo viên Toán trường THPT Yên Phong số 2, tỉnh Bắc Ninh, đề gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút, đề bám sát cấu trúc đề tham khảo Toán 2019 của Bộ GD&ĐT với nhiều dạng toán ở mức độ vận dụng và vận dụng cao, đáp án và lời giải chi tiết của đề sẽ được KHODETHI.ORG cập nhật khi số báo THTT tiếp theo (số 501) được phát hành.
(adsbygoogle = window.adsbygoogle || []).push();
Trích dẫn đề thử sức trước kỳ thi THPT Quốc gia 2019 môn Toán – Toán Học Tuổi Trẻ (Đề số 3):
+ Một khối nón làm bằng chất liệu không thấm nước, có khối lượng riêng lớn hơn khối lượng riêng của nước, có đường kính đáy a và chiều cao 12, được đặt vào trong và trên đáy của một cái cốc hình trụ bán kính đáy a như hình vẽ, sao cho đáy của khối nón tiếp xúc với đáy của cốc hình trụ. Đổ nước vào cốc hình trụ đến khi mực nước đạt đến độ cao 12 thì lấy khối nón ra. Hãy tính độ cao của nước trong cốc sau khi đã lấy khối nón ra.
+ Các ông Xuân, Hạ, Thu, Đông cùng góp chung số vốn 600 tỉ đồng để thành lập một công ty. Số tiền ông Xuân, Hạ, Thu góp lần lượt bằng 1/2, 1/3, 1/4 tổng số tiền của ba người còn lại. Hỏi ông Đông góp bao nhiêu tiền?
A. 200 tỉ đồng. B. 150 tỉ đồng. C. 120 tỉ đồng. . D. 130 tỉ đồng.
+ Cho số nguyên dương n và n tam giác ABC, A1B1C1 … AnBnCn, trong đó các điểm Ai+1, Bi+1, Ci + 1 lần lượt thuộc các đoạn thẳng BiCi, CiAi, AiBi (i = 1, n – 1) sao cho Ai+1Ci = 2Ai+1Bi, Bi+1Ai = 2Bi+1Ci, Ci+1Bi = 2Ci+1Ai. Gọi S là tổng tất cả diện tích của n tam giác đó. Tìm số nguyên dương n biết rằng S = 3(1 – 1/3^2018) và tam giác A1B1C1 có diện tích bằng 2.

Trả lời

Email của bạn sẽ không được hiển thị công khai.