Đề thi vào lớp 10 môn toán các tỉnh NH 2012-2013 – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Tổng hợp bài Kho_đề_thi Đề thi Toán Đại số lớp 9 xin tổng hợp lại quý bạn đọc về Đề thi vào lớp 10 môn toán các tỉnh NH 2012-2013, thông tin được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

ĐỀ THI TUYỂN SINH LỚP 10
CỦA CÁC TỈNH THÀNH PHỐ
NĂM HỌC 2012 – 2013
MÔN TOÁN

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.HCM Năm học: 2012 – 2013
MÔN: TOÁN
Thời gian làm bài: 120 phút
Bài 1: (2 điểm)
Giải các phương trình và hệ phương trình sau:
a)
b)
c)
d)
Bài 2: (1,5 điểm)
a) Vẽ đồ thị (P) của hàm số và đường thẳng (D): trên cùng một hệ trục toạ độ.
b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3: (1,5 điểm)
Thu gọn các biểu thức sau:
với x >0;

Bài 4: (1,5 điểm)
Cho phương trình (x là ẩn số)
Chứng minh rằng phương trình luôn luôn có 2 nghiệm phân biệt với mọi m.
Gọi x1, x2 là các nghiệm của phương trình.
Tìm m để biểu thức M = đạt giá trị nhỏ nhất
Bài 5: (3,5 điểm)
Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME0;

Câu 4:
a/ Phương trình (1) có ∆’ = m2 – 4m +8 = (m – 2)2 +4 > 0 với mọi m nên phương trình (1) có 2 nghiệm phân biệt với mọi m.
b/ Do đó, theo Viet, với mọi m, ta có: S = ; P =
M =
Khi m = 1 ta có nhỏ nhất
lớn nhất khi m = 1nhỏ nhất khi m = 1
Vậy M đạt giá trị nhỏ nhất là – 2 khi m = 1

Câu 5
Vì ta có do hai tam giác đồng dạng MAE và MBF
Nên MA.MB = ME.MF
(Phương tích của M đối với đường tròn tâm O)
Do hệ thức lượng trong đường tròn ta có
MA.MB = MC2, mặt khác hệ thức lượng
trong tam

Trả lời

Email của bạn sẽ không được hiển thị công khai.