đề thi vào 10 đà nẵng 2015 – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Nội dung bài được Kho_đề_thi Đề thi Toán Đại số lớp 9 xin thu thập lại các bạn học sinh về đề thi vào 10 đà nẵng 2015, thông tin được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT
TP.ĐÀ NẴNG Năm học: 2015 – 2016
Khóa ngày : 9, 10 – 06 – 2015
MÔN: TOÁN
Thời gian làm bài: 120 phút
ĐỀ CHÍNH THỨC

Bài 1: (1,5 điểm)
Đưa thừ số ra ngoài dấu căn của biểu thức
Tính giá trị của biểu thức :
Bài 2: (1,0 điểm) Giải hệ phương trình

Bài 3: (2,0 điểm) Cho hàm số y = x2 có đồ thị (P)
1) Vẽ đồ thị (P)
2) Cho các hàm số y = x + 2 và y = – x + m ( với m là tham số) lần lượt có đồ thị là (d) và (dm). Tìm tất cả các giá trị của m để trên một mặt phẳng tọa độ các đồ thị của (P) , (d) và (dm) cùng đi qua một điểm

Bài 4: (2,0 điểm) Cho phương trình x2 – 2(m – 1)x – 2m = 0, với m là tham số.
1) Giải phương trình khi m = 1.
2) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m.
Gọi x1 và x2 là hai nghiệm của phương trình, tìm tất cả các giá trị của m sao cho
x12 + x1 – x2 = 5 – 2m

Bài 5: (3,5 điểm)
Từ một điểm A nằm bên ngoài đường tròn (O) kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm)
1) Chứng minh rằng ABOC là tứ giác nội tiếp.
2) Cho bán kính đường tròn (O) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC.
3) Gọi (K) là đường tròn qua A và tiếp xúc với đường thẳng BC tại C. Đường tròn (K) và đường tròn (O) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC.

——–HẾT——–

Họ và tên thí sinh :………………………Số báo danh :…………Phòng thi:…………

GHI CHÚ :
Thí sinh được sử dụng máy tính đơn giản, các máy tính có tính năng tương tự như máy tính Casio fx-500A, Casio fx-500MS.
Đáp án
Bài 1 :1) (vì 2a2 0 với mọi a)

= =(=7-5=2
Vậy A = 2
Bài 2 : –
Vậy hệ phương trình có nghiệm duy nhất (x;y)=(;-3).
Bài 3 : 1) Vẽ đồ thị hàm số y=x2
Bảng giá trị
x
-2
-1
0
1
2

y=
4
1
0
1
4

Đồ thị

2)Phương trình hoành độ giao điểm của (P) và (d) : x2 = x + 2 ( x2 – x – 2 = 0(*)
Phương trình (*) có dạng : a – b + c = 0 nên có 2 nghiệm :x1= -1; x2=
Với x1=-1 y1=(-1)2=1 ta có (-1;1)
Với x2=2 y2=22 =4 ta có (2;4).
Vậy (d) cắt (P) tại hai điểm A(-1; 1) và B (2; 4).
Để (P), (d) và (dm) cùng đi qua một điểm thì hoặc A( (dm) hoặc B ( (dm) .
+ Với A(-1; 1) ( (dm) , ta có : 1 = -(-1) + m ( m = 0
+ Với B(2; 4) ( (dm), ta có : 4 = -2 + m ( m = 6
Vậy khi m = 0 hoặc m = 6 thì (P), (d) và (dm) cùng đi qua một điểm.
Bài 4 : 1) Thay m = 1 được phương trình : x2 – 2 = 0 ( x2 = 2 ( x = ±
Vậy khi m = 1, phương trình có hai nghiệm x1= và x2 = –
Có ∆ = b’2 – ac = [-(m-1)]2-1.(-2m)= m2-2m+1+2m=m2+1( 0 với mọi m
nên phương trình đã cho luôn có 2 nghiệm phân biệt với mọi m.
Theo Vi-et ta có : x1+x2==2m-2
Theo bài ta có x12 + x1 – x2 = 5 – 2m (2).

Trả lời

Email của bạn sẽ không được hiển thị công khai.