Đề thi thử Toán THPT Quốc gia 2019 lần 1 trường chuyên Hùng Vương – Gia Lai

Sau đây kho đề thi Đề thi thử môn Toán xin tổng hợp lại các sĩ tử về Đề thi thử Toán THPT Quốc gia 2019 lần 1 trường chuyên Hùng Vương – Gia Lai, bài được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

Chủ Nhật ngày 10 tháng 03 năm 2019, thầy và trò trường THPT chuyên Hùng Vương, Gia Lai đã tổ chức kỳ thi thử THPT Quốc gia môn Toán lần 1 năm học 2018 – 2019. KHODETHI.ORG chia sẻ đến thầy, cô và các em học sinh khối 12 nội dung đề và đáp án đề thi thử Toán THPT Quốc gia 2019 lần 1 trường chuyên Hùng Vương – Gia Lai, nhằm giúp các em có đề thi tham khảo trong quá trình ôn tập chuẩn bị cho kỳ thi chính thức THPT Quốc gia môn Toán năm học 2018 – 2019.

Đề thi thử Toán THPT Quốc gia 2019 lần 1 trường chuyên Hùng Vương – Gia Lai có mã đề 101, đề gồm 05 trang với 50 câu trắc nghiệm khách quan, học sinh có 90 phút để hoàn thành bài thi, đề có cấu trúc tương tự với đề tham khảo THPT Quốc gia môn Toán năm 2019 của Bộ Giáo dục và Đào tạo, đề thi có đáp án và lời giải chi tiết.
(adsbygoogle = window.adsbygoogle || []).push();
Trích dẫn đề thi thử Toán THPT Quốc gia 2019 lần 1 trường chuyên Hùng Vương – Gia Lai:
+ Hội nghị thượng đỉnh Mỹ – Triều lần hai được tổ chức tại Hà Nội, sau khi kết thúc Hội nghị. Ban tổ chức mời 10 người lãnh đạo cấp cao của cả hai nước (trong đó có Tổng thống Mỹ Donald Trump và Chủ tịch Triều Tiên Kim Jong-un) tham gia họp báo. Ban tổ chức sắp xếp 10 người ngồi vào 10 cái ghế thẳng hàng. Hỏi có bao nhiêu cách sắp xếp sao cho ông Donald Trump và Kim Jong-un ngồi cạnh nhau?
+ Hai hình nón bằng nhau có chiều cao bằng 2 dm, được đặt như hình vẽ bên (mỗi hình đều đặt thẳng đứng với đỉnh nằm phía dưới). Lúc đầu, hình nón trên chứa đầy nước và hình nón dưới không chứa nước. Sau đó, nước được chảy xuống hình nón dưới thông qua lỗ trống ở đỉnh của hình nón trên. Hãy tính chiều cao của nước trong hình nón dưới tại thời điểm khi mà chiều cao của nước trong hình nón trên bằng 1 dm.
+ Cho một hình vuông, mỗi cạnh của hình vuông đó được chia thành n đoạn bằng nhau bởi n – 1 điểm chia (không tính hai đầu mút mỗi cạnh). Xét các tứ giác có 4 đỉnh là 4 điểm chia trên 4 cạnh của hình vuông đã cho. Gọi a là số các tứ giác tạo thành và b là số các hình bình hành trong a tứ giác đó. Giá trị n thỏa mãn a = 9b là?

File WORD (dành cho quý thầy, cô): TẢI XUỐNG

Trả lời

Email của bạn sẽ không được hiển thị công khai.