Đề thi HSG Toán 11 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh

Những bài tập mà Kho_đề_thi Đề thi HSG Toán 11 xin thu thập lại các bạn học sinh về Đề thi HSG Toán 11 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh, thông tin được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

Nhằm tuyển chọn các em học sinh khối lớp 11 giỏi môn Toán để thành lập đội tuyển học sinh giỏi Toán 11 THPT, trường THPT Thuận Thành 2, tỉnh Bắc Ninh tiến hành tổ chức kỳ thi chọn học sinh giỏi Toán 11 THPT năm học 2018 – 2019. Các em học sinh đạt điểm số cao trong kỳ thi lần này sẽ được tuyên dương trước toàn trường để làm tấm gương học tập cho các học sinh khác, đồng thời được tiếp tục bồi dưỡng, tham dự kỳ thi học sinh giỏi Toán cấp tỉnh.

Đề thi HSG Toán 11 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh được biên soạn theo hình thức tự luận với 5 bài toán, đề gồm 01 trang, học sinh làm bài thi trong 150 phút, đề thi có lời giải chi tiết.
(adsbygoogle = window.adsbygoogle || []).push();
Trích dẫn đề thi HSG Toán 11 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh:
+ Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn BC = 2a đáy bé AD = a, AB = b. Mặt bên SAD là tam giác đều. M là một điểm di động trên AB, Mặt phẳng (P) đi qua M và song song với SA, BC.
1. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng (P). Thiết diện là hình gì?
2. Tính diện tích thiết diện theo a, b và x = AM (0 < x < b). Tìm x theo b để diện tích thiết diện lớn nhất.
+ Chọn ngẫu nhiên một số tự nhiên có sáu chữ số khác nhau. Tính xác suất để chọn được một số có 3 chữ số chẵn và 3 chữ số lẻ.
+ Cho các số x + 5y, 5x + 2y, 8x + y theo thứ tự đó lập thành một cấp số cộng; đồng thời các số (y – 1)^2, xy – 1, (x + 2)^2 theo thứ tự lập thành một cấp số nhân. Hãy tìm x, y.

File WORD (dành cho quý thầy, cô): TẢI XUỐNG

Trả lời

Email của bạn sẽ không được hiển thị công khai.