Đề ôn thi trường chuyên – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Sau đây KHODETHI.ORG Đề thi Toán Đại số lớp 9 xin tổng hợp lại các sĩ tử về Đề ôn thi trường chuyên, dữ liệu được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

SỞ GIÁO DỤC VÀ ĐÀO TẠOHẢI PHÒNG ĐỀ THI TỐT NGHIỆP PHỔ THÔNG THCS
Môn thi : Toán – Năm học 1999 – 2000
Thời gian làm bài : 120 phút (không kể thời gian giao đề)

A. Lý thuyết : (2 điểm) Học sinh chọn 1 trong 2 câu sau :
Câu 1 :
Hãy viết định nghĩa căn bậc hai số học của một số a ≥ 0. Tính:

b) Hãy viết định nghĩa về đường thẳng song song với mặt phẳng.
Câu 2 :
a) Hãy viết dạng tổng quát hệ hai phưng trình bậc nhất hai ẩn số.
b) Chứng minh : “Mọi góc nội tiếp chắn nửa đường tròn đều là góc vuông”.
B. Nội dung bài : (8 điểm) Bắt buộc cho mọi học sinh.
Bài 1 : (2 điểm).
Cho :
M =
Tính M + N và M x N.
Tìm tập xác định của hàm số :
y =
c) Cho đường thẳng (d) có phưng trình . Hãy tìm tọa độ các giao điểm của đường thẳng (d) với các trục tọa độ.
Bài 2 : (2 điểm).
Trong một phòng có 288 ghế được xếp thành các dãy, mỗi dãy đều có số ghế như nhau. Nếu ta bớt đi 2 dãy và mỗi dãy còn lại thêm 2 ghế thì vừa đủ cho 288 người họp (mỗi người ngồi một ghế). Hỏi trong phòng đó có mấy dãy ghế và mỗi dãy có bao nhiêu ghế ?
Bài 3 : (4 điểm).
Cho nửa đường tròn đường kính AB, Kẻ tiếp tuyến Bx với nửa đường tròn. C là điểm trên nửa đường tròn sao cho cung AC bằng cung CB. Trên cung CB lấy điểm D tùy ý (D khác C và B). Các tia AC, AD cắt Bx lần lượt tại E và F.
a) Chứng minh ΔABE vuông cân.
b) Chứng minh ΔABF ~ ΔBDF.
c) Chứng minh tứ giác CEFD nội tiếp.
d) Cho điểm C di động trên nửa đường tròn (C khác A và B) và D di động trên cung CB (D khác C và B). Chứng minh:
AC x AE = AD x AF và có giá trị không đổi.
KỲ THI TUYỂN SINH TRƯỜNG THPT NGUYỄN TRÃI, HẢI DƯƠNG NĂM HỌC 2002 – 2003
Môn Toán – Dành cho các lớp chuyên tự nhiên
Thời gian làm bài 150 phút
Bài I (3,0 điểm)
Cho biểu thức :

1) Rút gọn biểu thức A.
2) Tìm các số nguyên x để biểu thức A là một số nguyên.
Bài II (3,0 điểm)
1) Gọi x1 và x2 là hai nghiệm của phương trình :
x2 – (2m – 3)x + 1 – m = 0
Tìm giá trị của m để x12 + x22 + 3×1.x2. ( x1 + x2)đạt giá trị lớn nhất.
2) Cho a, b là các số hữu tỉ thỏa mãn: a2003 + b2003 = 2 a2003 . b2003
Chứng minh rằng phương trình : x2 + 2x + ab = 0 có hai nghiệm hữu tỉ.
Bài III (3,0 điểm)
1) Cho tam giác cân ABC, góc A = 180o. Tính tỉ số BC/AB.
2) Cho hình quạt tròn giới hạn bởi cung tròn và hai bán kính OA, OB vuông góc với nhau. Gọi I là trung điểm của OB, phân giác góc AIO cắt OA tại D, qua D kẻ đường thẳng song song với OB cắt cung tròn ở C. Tính góc ACD .
Bài IV (1,0 điểm)
Chứng minh bất đẳng thức :

với a, b, c là các số thực bất kì.
KÌ THI HỌC SINH GIỎI CẤP THÀNH PHỐ (THCS) TP HỒ CHÍ MINH
Năm học 2002 – 2003
* Môn thi : Toán       * Thời gian : 150 phút
Bài 1 : (4 điểm)
Cho phương trình : (2m – 1) x2 – 2mx + 1 = 0.
a) Định m để phương trình trên có nghiệm thuộc khoảng (-1 ; 0)
b) Định m để phương trình có hai nghiệm x1, x2 thỏa |x12 – x22| = 1.
Bài 2 : (5 điểm)
Giải các phương trình và hệ phương trình sau đây :

Bài 3 : (3 điểm)
a) Cho a >c, b > c, c > 0. Chứng minh :

b) Cho x ≥ 1 , y ≥ 1. Chứng minh :

Bài 4 : (3 điểm)
Từ điểm A ở ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên tia đối của tia BC lấy điểm D. Gọi E là giao điểm của DO và AC. Qua E vẽ tiếp tuyến thứ

Trả lời

Email của bạn sẽ không được hiển thị công khai.