ĐỀ LUYỆN THI VÀO 10 (TOÁN ) – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Những bài tập mà KHODETHI Đề thi Toán Đại số lớp 9 xin thu thập lại các sĩ tử về ĐỀ LUYỆN THI VÀO 10 (TOÁN ), bài được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

ĐỀ ÔN THI SỐ 1: MÔN TOÁN 9
Thời gian: 120 phút

Bài 1(2,5đ): Cho biểu thức A = , với x ≥ 0 và x ≠ 4.
1/ Rút gọn biểu thức A.
2/ Tính giá trị của biểu thức A khi x = 25.
3/ Tìm giá trị của x để A = -1/3.

Bài 2 (2,5đ): Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 3 ngày, tổ thứ hai may trong 5 ngày thì cả hai tổ may được 1310 chiếc áo. Biết rằng trong một ngày tổ thứ nhất may được nhiều hơn tổ thứ hai là 10 chiếc áo. Hỏi mỗi tổ trong một ngày may được bao nhiêu chiếc áo?

Bài 3 (1,0đ):
Cho phương trình (ẩn x): x2 – 2(m+1)x + m2 +2 = 0
1/ Giải phương trình đã cho khi m = 1.
2/ Tìm giá trị của m để phương trình đã cho có nghiệm phân biệt x1, x2 thoả mãn hệ thức x12 + x22 = 10.

Bài 4(3,5đ):
Cho đường tròn (O;R) và điểm A nằm bên ngoài đường tròn. Kẻ tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).
1/ Chứng minh ABOC là tứ giác nội tiếp.
2/ Gọi E là giao điểm của BC và OA. Chứng minh BE vuông góc với OA và OE.OA = R2.
3/ Trên cung nhỏ BC của đường tròn (O;R) lấy điểm K bất kỳ (K khác B và C). Tiếp tuyến tại K của đường tròn (O;R) cắt AB, AC theo thứ tự tại P, Q. Chứng minh tam giác APQ có chu vi không đổi khi K chuyển động trên cung nhỏ BC.
4/ Đường thẳng qua O và vuông góc với OA cắt các đường thẳng AB, AC theo thứ tự tại các điểm M, N. Chứng minh PM + QN ≥ MN.

Bài 5(0,5đ):
Giải phương trình:

———————– hết ——————–

ĐỀ ÔN THI SỐ 2: MÔN TOÁN 9
Thời gian: 120 phút

Bài 1. (1,5 điểm)
Cho biểu thức : P = ( Với a 0 ; a 4 )
a) Rút gọn biểu thức P.
b) Tính tại a thoả mãn điều kiện a2 – 7a + 12 = 0

Bài 2. (2 điểm).
Cho hệ phương trình:
a) Tìm m để hệ có nghiệm (x; y) thoả mãn x > 0 và y > 0.
b) Tìm m để hai đường thẳng biểu diễn hai phương trình của hệ
cùng cắt nhau tại một điểm trên (P): y = có hoành độ là 2.
Bài 3. ( 1,5 điểm)
Cho parabol (P) : y = và đường thẳng (d): y = mx + .
Vẽ (P) .
Chứng tỏ rằng với mọi m đường thẳng (d) luôn đi qua một điểm cố định.
Chứng minh rằng với mọi m, (d) luôn cắt (P) tại hai điểm phân biệt.

Bài 4.(4 điểm)
Cho tam giác ABC có , các góc B và C đều nhọn. Đường tròn (O)
đường kính BC cắt AB và AC lần lượt tai D và E. Gọi H là giao điểm của
CD và BE.
1. Chứng minh AE = BE.
2. Chứng minh tứ giác ADHE nội tiếp. Xác định tâm K của đường tròn
ngoại tiếp tứ giác ADHE.
3. Chứng minh OE là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE.
4. Cho BC = 2a.Tính diện tích viên phân cung DE của đường tròn (O)
theo a.

Bài 5.( 1 điểm )
Cho phương trình :
Tìm các giá trị của m để phương trình đã cho có 4 nghiệm phân biệt.

———————– hết ——————–

ĐỀ ÔN THI SỐ 3: MÔN TOÁN 9
Thời gian: 120 phút

Bài 1: (1,5 điểm)
Cho biểu thức: P =
a)Rút gọn P
b)Tìm x nguyên để P có giá trị nguyên.
Bài 2: (1,5 điểm)
1) Cho phương trình: x2-( 2m + 1)x + m2 + m – 6= 0 (*)
a)Tìm m để phương trình (*) có 2 nghiệm âm.
2) Cho phương trình 2×2 +

Hỏi và đáp