ĐỀ CHỌN HSG TOÁN 9 (5) – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Tổng hợp bài KHODETHI.ORG Đề thi Toán Đại số lớp 9 xin tổng hợp lại bạn đọc về ĐỀ CHỌN HSG TOÁN 9 (5), bài được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

PHÒNG GD & ĐT THANH CHƯƠNG ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN VÀ
CHỌN ĐỘI TUYỂN DỰ THI HỌC SINH GIỎI CẤP TỈNH.
NĂM HỌC: 2010 – 2011. Môn thi: TOÁN 9
Thời gian làm bài: 150 phút

Câu 1. Giải phương trình

Câu 2. Cho đường thẳng (d) có phương trình: , với tham số .
Tìm điểm cố định mà đường thẳng (d) luôn đi qua.
b. Xác định giá trị tham số m để khoảng cách từ gốc toạ độ O đến đường thẳng (d) là lớn nhất.
Câu 3.
Cho B = ; B là một số gồm n chữ số 1, n + 1 chữ số 2 và một chữ số 5. Chứng minh B là số chính phương.
Cho là số nguyên tố; . Chứng minh rằng nếu là số nguyên tố thì: là hợp số.
Chứng minh không tồn tại cặp giá trị nguyên thỏa mãn:
Cho và , chứng minh:
Câu 4. Cho đường tròn (O) và điểm P nằm ngoài đường tròn. Từ P kẻ 2 tiếp tuyến PA, PB với đường tròn (O), (A, B là các tiếp điểm); OP cắt AB tại M. Qua M kẻ dây cung CD của đường tròn (O), (CD khác AB và CD không đi qua O). Hai tiếp tuyến của (O) tại C và D cắt nhau ở Q. Chứng minh:
a) AB < CD ; b) PQ vuông góc với PO tại P.
Câu 5. Cho đường thẳng xy; đường tròn (O) và một điểm A nằm trên đừơng tròn (O), xy không cắt (O). Dựng đường tròn tâm K tiếp xúc với (O) tại A và tiếp xúc với đường thẳng xy. (Chỉ trình bày cách dựng và biện luận)
Hết./.
PHÒNG GD & ĐT THANH CHƯƠNG HD CHẤM ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN VÀ
CHỌN ĐỘI TUYỂN DỰ THI HỌC SINH GIỎI CẤP TỈNH.
NĂM HỌC: 2010 – 2011.Môn thi: TOÁN 9
Thời gian: 150 phút( không kể thời gian giao đề)
Câu
Ý
Nội dung cần đạt
Điểm

1
a
, Điều kiện:
HS biến đổi:
, Dấu “=” xẩy ra khi
, Dấu “=” xẩy ra khi
Vậy nghiệm: thỏa mãn điều kiện
0,25

0,25

0,25
1,75

b
, ĐK:
Nhân 2 vế với : và biến đổi đưa về hệ PT:

Đối chiếu điều kiện: thỏa mãn.
0,25

0,5

0,25

2
a
(d) : ; với tham số,
Gọi là điểm cố định (d) luôn đi qua: Thay vào PT của (d) ta có:
, Với mọi m ,

0,5

0,5
1,75

b
Nhận thấy (d) không đi qua O
Tìm được tọa độ giao điểm A của đồ thị hàm số với trục Ox: A
Giao điểm B của đồ thị hàm số với trục Oy: B
Ta có: AOB vuông tại O và có khoảng cách từ O đến (d) là OH (đường cao) nên: Hay

; Dấu “=” xẩy ra .
Xét ; K/c từ O đến (d) bằng 2. Vậy

0,25

0,25

0,25

3
a
B =

vì () Nên B là số chính phương

0,25

0,25
2,0

b
là số nguyên tố; nên lẻ và không chia hết cho 3chẵn; chia cho 3 dư 1 hoặc 2
HS lập luận để chứng tỏ là hợp số.
0,2

0,3

c
lẻ, đặt thay vào ta có: (1)chẵn,
Thay vào (1) và biến đổi:
Xét thấy VT của (2) luôn chẵn; VP của (2) là số lẻ vì k(k+1) chẵn (Tích 2 số nguyên liên tiếp). Vậy dấu “=” của (2) không thể xẩy raKhông tồn tại cặp số nguyên (x; y) thỏa mãn:

0,25

0,25

d
; xét
Chứng minh tương tự: ; Cộng vế theo vế ta có

Trả lời

Email của bạn sẽ không được hiển thị công khai.