chuyen de on thi vào THPT – Thư viện Đề thi và Kiểm tra Đề thi Toán Hình học lớp 9

Sau đây Kho_đề_thi Đề thi Toán Hình học lớp 9 xin tổng hợp lại quý bạn đọc về chuyen de on thi vào THPT, thông tin được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

ĐỀ THI TUYỂN SINH LỚP 10, THPT KHÁNH HÒA
Năm học : 1995–1996 Thời gian : 120 phút
Bài 1: (2đ)
a) Rút gọn biểu thức:
(với x>0, y>0, x ≠ y)
b) Cho các hàm số f(x) = 6×2; g(x) = 5x – 1. Tìm số a sao cho: f(a) = g(a).
Bài 2: (3đ)
Cho đường thẳng (d) có phương trình: y = 3(2m + 3) – 2mx và Parapol (P) có phương trình y = x2.
a) Định m để hàm số y = 3(2m + 3) – 2mx luôn luôn đồng biến.
b) Biện luận theo m số giao điểm của (d) và (P).
c) Tìm m để (d) cắt (P) tại hai điểm có hoành độ cùng dấu.
Bài 3: (2đ)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và cạnh SA vuông góc với đáy. Gọi O là giao điểm của AC và BD.
a) Chứng minh các mặt bên của hình chóp là các tam giác vuông.
b) Vẽ AH vuông góc với SO (H ( SO). C/m: AH vuông góc với mặt phẳng (SBD).
Bài 4: (3đ)
Cho tam giác đều ABC. Một đường thẳng song song với AC cắt các cạnh AB, BC theo thứ tự tại M, P. Gọi H là trọng tâm của tam giác PMB, E là trung điểm của AP và N là chân đường vuông góc kẻ từ H đến MP. Chứng minh:
a) PC = 2NE.
b) ( HNE = ( HPC.
c) (HNE (HPC.
d) Tam giác HEC vuông.

(((((((((( HẾT ((((((((((

ĐỀ THI TUYỂN SINH LỚP 10, THPT TỈNH KHÁNH HÒA
Năm học : 1996–1997 Thời gian : 120 phút
Bài 1: (2đ)
Cho biểu thức
Rút gọn A và chứng tỏ A là một số không âm?
Tìm giá trị của x để A = 16.
Bài 2: (3đ)
Cho phương trình x2 –2(m –1 ) x + 2m–3 = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
b) Với giá trị nào m thì phương trình (1) có một nghiệm bằng 2, khi đó tìm nghiệm còn lại?
c) Gọi x1; x2 là hai nghiệm của phương trình (1) và đặt B = x12 x2 +x1x22 –5 . Chứng minh: B = 4m2 – 10m +1. Với giá trị nào của m thì B đạt giá trị nhỏ nhất? Tính giá trị nhỏ nhất đó.
Bài 3: (2đ) Cho hệ phương trình

Giải hệ phương trình khi m = 2
Với giá trị nguyên nào của m để hệ có nghiệm nguyên?
Bài 4: (3đ)
Cho (O; R) và đường thẳng xy tiếp xúc với (O) tại A. Điểm B lấy bất kì trên (O), kẻ BH vuông góc với xy tại H.
Chứng minh rằng BA là phân giác của
Chứng minh rằng phân giác ngoài của luôn đi qua một điểm cố định khi B di động trên (O).
Gọi M là giao điểm của BH với phân giác của góc . Tìm quỹ tích của M khi B di động trên (O).
(((((((((( HẾT ((((((((((

ĐỀ THI TUYỂN SINH LỚP 10, THPT TỈNH KHÁNH HÒA
Năm học : 1997–1998 Thời gian : 120 phút
Bài 1: (2đ)
Với mọi x > 0 và x ≠ 1 cho hai biểu thức:
;
a) Chứng tỏ rằng: .
b) Tìm Mọi giá trị của x để cho A.B = x – 3.
Bài 2: (2,5đ)
Cho hàm số: y = (m2 – 2)x2.
a) Tìm m để đồ thị hàm số đi qua điểm .
b) Với giá trị m vừa tìm được ở câu a), hãy:
i) Vẽ đồ thị (P) của hàm số.
ii) Chứng tỏ rằng đường thẳng: 2x – y – 2 = 0 tiếp xúc với đồ thị (P) và tính tọa độ tiếp điểm.
iii) Tìm GTLN và GTNN của hàm số trên đoạn [– 4; 3].
Bài 3: (2đ)
Hai người đi bộ khởi hành cùng một lúc ở hai địa điểm A và

Trả lời

Email của bạn sẽ không được hiển thị công khai.