chuyên đề hàm số lớp 9 – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Nội dung bài được KHODETHI.ORG Đề thi Toán Đại số lớp 9 xin thu thập lại các sĩ tử về chuyên đề hàm số lớp 9, dữ liệu được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

CHỦ ĐỀ 3: HÀM SỐ VÀ ĐỒ THỊ

A.KIẾN THỨC CƠ BẢN :
1. Khái niệm hàm số:
Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được một và chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x được gọi là biến số .
Kí hiệu là y = f(x), y = g(x),…
Khi x thay đổi mà y luôn nhận một giá trị không đổi thì hàm số y được gọi là hàm hằng.
2. Đồ thị của hàm số:
Trong mặt phẳng tọa độ Oxy, tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x; f(x)) được gọi là đồ thị hàm số y = f(x).
3. Tập xác định của hàm số :
TXĐ của hàm số y = f(x) là tập hợp các giá trị của biến để biểu thức f(x) có nghĩa.
4. Hàm số đồng biến, hàm số nghịch biến.
Cho hàm số y = f(x) xác định với mọi x thuộc .
a) Nếu giá trị của biến x tăng lên mà giá trị tương ứng của f(x) cũng tăng theo thì ta nói hàm số y = f(x) là hàm số đồng biến trên . (Hoặc : với x1, x2 bất kỳ thuộc ; nếu x1 < x2 mà f(x1) < f(x2) thì hàm số y = f(x) đồng biến trên )
b) Nếu giá trị của biến x tăng lên mà giá trị tương ứng của f(x) lại giảm đi thì ta nói hàm số y = f(x) là hàm số nghịch biến trên . (Hoặc : với x1, x2 bất kỳ thuộc ; nếu x1 f(x2) thì hàm số y = f(x) nghịch biến trên )
5. Hàm số bậc nhất y = ax + b (a 0)
a) Định nghĩa: Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b ,trong đó a, b là các số cho trước , a 0.
Hàm số bậc nhất xác định với mọi x thuộc
b)Tính chất hàm số bậc nhất :hàm số đồng biến trên khi a >0, nghịch biến trên
khi a < 0.
Chú ý : Khi a = 0, ta có hàm số y = b là hàm hằng.
c) Đồ thị hàm số bậc nhất: Đồ thị hàm số bậc nhất y = ax + b (a 0) là một đường thẳng. Ta còn gọi đồ thi của hàm số y = ax + b là đường thẳng y = ax + b. Đường thẳng này có các đặc điểm sau :
+ Cắt trục tung tại điểm (0; b); b gọi là tung độ gốc của đường thẳng.
+ Cắt trục hoành tại điểm ().
Chú ý : Khi b = 0, đồ thị đi qua gốc tọa độ.
Nếu a > 0 thì đường thẳng “đi lên” từ trái qua phải. Nếu a < 0 thì đường thẳng
“đi xuống” từ trái qua phải.
d) Vị trí tương đối của hai đường thẳng:
Cho hai đường thẳng y= ax + b (a 0) và đường thẳng y = a’x + b’(a’ 0)
*Hai đường thẳng song song với nhau khi và chỉ khi a = a’và b b’
*Hai đường thẳng trùng nhau khi và chỉ khi a = a’và b = b’
*Hai đường thẳng cắt nhau khi và chỉ khi a a’
Trường hợp riêng : Hai đường thẳng vuông góc với nhau khi và chỉ khi a . a’= -1
e) Hệ số góc của đường thẳng:
Trong mặt phẳng tọa độ Oxy cho đường thẳng y= ax + b(a 0). Khi ta nói góc α là góc tạo bởi đường thẳng y= ax + b và trục Ox, ta hiểu đó là góc tạo bởi tia A x và tia AT , trong đó A là giao điểm của đường thẳng y= ax + b và trục Ox,T là điểm thuộc đường thẳng y= ax+b có tung độ dương.
Ta gọi a là hệ số góc của đường thẳng y= ax + b.
Ta có :
*Nếu a >0 thì α là góc nhọn và a càng lớn thì góc càng lớn.
*Nếu a 0 thì tan α = a. Nếu a < 0 thì tan = – a.
6. Hàm số y = ax2 (a 0) :
a) Hàm số y = ax2 xác định với mọi x thuộc và có tính chất sau:

Trả lời

Email của bạn sẽ không được hiển thị công khai.