các bài tập hình hay lên 10 – Thư viện Đề thi và Kiểm tra Đề thi Toán Hình học lớp 9

Nội dung bài được kho đề thi Đề thi Toán Hình học lớp 9 xin tổng hợp lại quý bạn đọc về các bài tập hình hay lên 10, dữ liệu được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

Câu 1 Cho tam giác đều ABC có đường cao AH (H thuộc BC). Trên cạnh BC lấy điểm M ( M không trùng với B , C, H). Gọi P và Q lần lượt là hình chiếu vuông góc của M trên hai cạnh AB và AC.
Chứng minh rằng 5 điểm A, P, H, M, Q cùng nằm trên một đường tròn tâm O.
Chứng minh rằng tam giác OHQ đều. Từ đó hãy suy ra OH vuông góc với PQ.
Chứng minh rằng MP + MQ = AH.
***a) A, P, M, H, Q cùng thuộc đường tròn đường kínhAM, tâm O; trung điểm AM.
b) Xét (O) có
suy ra ( góc ở tâm)
PH = HQ = OP = OQ
Tứ giác PHOQ là hình thoi.
PQ min ( PI min
Mà PI = PO min ( AM min ( M trùng H.
Lúc đó PQ = =
Câu 2 Cho tam giác vuông ABC = 900 ) nội tiếp trong đường tròn tâm O . Trên cung nhỏ AC ta lấy một điểm M bất kỳ ( M khác A và C ) . Vẽ đường tròn tâm A bán kính AC , đường tròn này cắt đường tròn (O) tại điểm D ( D khác C ) . Đoạn thẳng BM cắt đường tròn tâm A ở điểm N .
Chứng minh MB là tia phân giác của góc
Chứng minh BC là tiếp tuyến của đường tròn tâm A nói trên .
So sánh góc CNM với góc MDN .
Cho biết MC = a , MD = b . Hãy tính đoạn thẳng MN theo a và b .

Cau 3: Cho ABCD là một tứ giác nội tiếp . P là giao điểm của hai đờng chéo AC và BD .
Chứng minh hình chiếu vuông góc của P lên 4 cạnh của tứ giác là 4 đỉnh của một tứ giác có đường tròn nội tiếp .
M là một điểm trong tứ giác sao cho ABMD là hình bình hành . Chứng minh rằng nếu góc CBM = góc CDM thì góc ACD = góc BCM .
Tìm điều kiện của tứ giác ABCD để :

Câu 4 Cho tam giác ABC , M là trung điểm của BC . Giả sử góc
Chứng minh rằng tam giác ABM đồng dạng với tam giác CBA .
Chứng minh minh : BC2 = 2 AB2 . So sánh BC và đường chéo hình vuông cạnh là AB .
Chứng tỏ BA là tiếp tuyến của đường tròn ngoại tiếp tam giác AMC .

Câu 5Cho hình bình hành ABCD có đỉnh D nằm trên đường tròn đường kính AB . Hạ BN và DM cùng vuông góc với đường chéo AC .
Chứng minh :
Tứ giác CBMD nội tiếp .
Khi điểm D di động trên trên đường tròn thì không đổi .
DB . DC = DN . AC

Câu 6
Cho hình thoi ABCD có góc A = 600 . M là một điểm trên cạnh BC , đường thẳng AM cắt cạnh DC kéo dài tại N .
Chứng minh : AD2 = BM.DN .
Đường thẳng DM cắt BN tại E . Chứng minh tứ giác BECD nội tiếp .
Khi hình thoi ABCD cố định . Chứng minh điểm E nằm trên một cung tròn cố định khi m chạy trên BC

Câu 7 Cho tam giác ABC , góc B và góc C nhọn . Các đường tròn đường kính AB , AC cắt nhau tại D . Một đường thẳng qua A cắt đường tròn đường kính AB , AC lần lượt tại E và F .
Chứng minh B , C , D thẳng hàng .
Chứng minh B, C , E , F nằm trên một đường tròn .
Xác định vị trí của đường thẳng qua A để EF có độ dài lớn nhất .

Câu 8)
Cho đường tròn tâm O và cát tuyến CAB ( C ở ngoài đường tròn ) . Từ điểm chính giữa

Trả lời

Email của bạn sẽ không được hiển thị công khai.