BDHG Toán 8 – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 8

Tổng hợp bài KHODETHI.ORG Đề thi Toán Đại số lớp 8 xin thu thập lại các sĩ tử về BDHG Toán 8, thông tin được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

Chuyên đề 2
Biến đổi biểu thức đại số

a – biển đổi biểu thức nguyên
I. Một số hằng đẳng thức cơ bản
(a ( b)2 = a2 ( 2ab + b2 ;
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca ;

= ;
(a ( b)3 = a3 ( 3a2b + 3ab2 ( b3 = a3 ( b3 ( 3ab(a ( b);
(a ( b)4 = a4 ( 4a3b + 6a2b2 ( 4ab3 + b4 ;
a2 – b2 = (a – b)(a + b) ;
a3 – b3 = (a – b)(a2 + ab + b2) ;
an – bn = (a – b)(an – 1 + an – 2b + an – 3b2 + … + abn – 2 + bn – 1) ;
a3 + b3 = (a + b)(a2 – ab + b2)
a5 + b5 = (a + b)(a4 – a3b + a2b2 – ab3 + b5) ;
a2k + 1 + b2k + 1 = (a + b)(a2k – a2k – 1b + a2k – 2b2 – … + a2b2k – 2 – ab2k – 1 + b2k) ;
II. Bảng các hệ số trong khai triển (a + b)n – Tam giác Pascal
Đỉnh

1

Dòng 1 (n = 1)

1

1

Dòng 2 (n = 2)

1

2

1

Dòng 3 (n = 3)

1

3

3

1

Dòng 4 (n = 4)

1

4

6

4

1

Dòng 5 (n = 5)
1

5

10

10

5

1

Trong tam giác này, hai cạnh bên gồm các số 1 ; dòng k + 1 được thành lập từ dòng k (k ≥ 1), chẳng hạn ở dòng 2 ta có 2 = 1 + 1, ở dòng 3 ta có 3 = 2 + 1, 3 = 1 + 2, ở dòng 4 ta có 4 = 1 + 3, 6 = 3 + 3, 4 = 3 + 1, …Khai triển (x + y)n thành tổng thì các hệ số của các hạng tử là các số trong dòng thứ n của bảng trên. Người ta gọi bảng trên là tam giác Pascal, nó thường được sử dụng khi n không quá lớn. Chẳng hạn, với n = 4 thì :
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
và với n = 5 thì :
(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 10ab4 + b5
II. Các ví dụ
Ví dụ 1. Đơn giản biểu thức sau :
A = (x + y + z)3 – (x + y – z)3 – (y + z – x)3 – (z + x – y)3.
Lời giải
A = [(x + y) + z]3 – [(x + y) – z]3 – [z – (x – y)]3 – [z + (x – y)]3
= [(x + y)3 + 3(x + y)2z + 3(x + y)z2 + z3] – [(x + y)3 – 3(x + y)2z + 3(x + y)z2 – z3] –
– [z3 – 3z2(x – y) + 3z(x – y)2 – (x – y)3] – [z3 + 3z2(x – y) + 3z(x – y)2 + (x – y)3]
= 6(x + y)2z – 6z(x – y)2 = 24xyz
Ví dụ 2. Cho x + y = a, xy = b (a2 ≥ 4b). Tính giá trị của các biểu thức sau :
a) x2 + y2 ; b) x3 + y3 ; c) x4 + y4 ; d) x5 + y5
Lời giải
x2 + y2 = (x + y)2 – 2xy = a2 – 2b
x3 + y3 = (x + y)3 – 3xy(x + y) = a3 – 3ab
x4 +

Hỏi và đáp