BÀI GIẢI ĐỀ THI VÀO 10 TỈNH ĐỒNG NAI NĂM 2017-2018 – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Nội dung bài được KHODETHI Đề thi Toán Đại số lớp 9 xin tổng hợp lại các sĩ tử về BÀI GIẢI ĐỀ THI VÀO 10 TỈNH ĐỒNG NAI NĂM 2017-2018, thông tin được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

SỞ GIÁO DỤC VÀ ĐÀO TẠO THI TUYỂN SINH VÀO LỚP 10 THPT
TỈNH ĐỒNG NAI NĂM HỌC 2017 – 2018

ĐỀ CHÍNH THỨC Môn thi : TOÁN
Thời gian làm bài : 120 phút
( Đề gổm 1 trang, có 5 câu ).
Câu 1. ( 2,25 điểm )
1) Giải phương trình
2) Giải hệ phương trình :
3) Giải phương trình
Câu 2. ( 2,25 điểm )
Cho hai hàm số và có đồ thị lần lượt là ( P ) và ( d )
1) Vẽ hai đồ thị ( P ) và ( d ) trên cùng một mặt phẳng tọa độ.
2 ) Tìm tọa độ giao điểm của hai đồ thị ( P ) và ( d ).
Câu 3. ( 1,75 điểm )
1) Cho a >0 và a4 . Rút gọn biểu thức
2) Một đội xe dự định chở 120 tấn hàng. Để tăng sự an toàn nên đến khi thực hiện, đội xe được bổ sung thêm 4 chiếc xe, lúc này số tấn hàng của mỗi xe chở ít hơn số tấn hàng của mỗi xe dự định chở là 1 tấn. Tính số tấn hàng của mỗi xe dự định chở, biết số tấn hàng của mỗi xe chở khi dự định là bằng nhau, khi thực hiện là bằng nhau.
Câu 4 : ( 0,75 điểm )
Tìm các giá trị của tham số thực m để phương trình: x2 + ( 2m – 1 )x + m2 – 1 = 0 có hai nghiệm phân biệt x1, x2 sao cho biểu thức P = ( x1 )2 + ( x2 )2 đạt giá trị nhỏ nhất.
Câu 5 : ( 3,0 điểm )
Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc đều là góc nhọn. Gọi M là trung điểm của đoạn AH.
1) Chứng minh tứ giác AEHF nội tiếp đường tròn.
2) Chứng minh CE.CA = CD.CB.
3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF.
4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh

HẾT
BÀI GIẢI ĐỀ TUYỂN SINH 10 TỈNH ĐỒNG NAI NĂM 2017-2018
Câu 1. ( 2,25 điểm )
1) Giải phương trình
Cách 1:
=81-80=1>0 nên phương trình có hai nghiệm phân biệt
Vậy phương trình có tập nghiệm S=4;5

Cách 2:
Vậy phương trình có tập nghiệm S=4;5

2) Giải hệ phương trình :

Vậy hệ phương trình có nghiêm duy nhất (x;y)=(1;1)
3) Giải phương trình (1)
Cách 1:

Vây phương trình có tập nghiệm
Cách 2: Đặt t=x2 ( ta có phương trình t2-2t-3=0 (2)
Ta có a-b+c=1+2-3=0 nên phương trình (2) có 2 nghiệm t1=-1(loại);t2=3(nhận)
Với t2=3
Vây phương trình có tập nghiệm
Câu 2. ( 2,25 điểm )
1) Vẽ hai đồ thị ( P ) và ( d ) trên cùng một mặt phẳng tọa độ.
*
Hàm số xác định với mọi x
Bảng giá trị
x
-2
-1
0
1
2

y
-2
-0,5
0
-0,5
-2

Nhận xét: Đồ thị hs là một parabol đi qua gốc tọa độ,nhận trục tung làm trục đối xứng nằm phía dưới trục hoành,O là điểm cao nhất
*y=x-4
Đồ thị hs là đường thẳng đi qua hai điểm (0;-4) và (4;0)

2)Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình

nên phương trình có 2 nghiệm phân biệt x1=2;x2=-4
x1=2 y1=-2 ; x2=-4y2=-8
Vậy tọa độ giao điểm của (P) và (d) là (2;-2) và (-4;-8)
Câu 3. ( 1,75 điểm )
1) Với a >0 và a4 , ta có

2)Cách 1:Gọi x(xe) là số xe của đội lúc đầu ( x nguyên dương)
Số tấn hàng mỗi xe dự định chở (tấn)
x+

Trả lời

Email của bạn sẽ không được hiển thị công khai.