61 đề Toán vào lớp 10 trường chuyên – Thư viện Đề thi và Kiểm tra Đề thi Toán Đại số lớp 9

Tắt (X)

Quảng cáo Adsense

Sau đây kho đề thi Đề thi Toán Đại số lớp 9 xin tổng hợp lại các sĩ tử về 61 đề Toán vào lớp 10 trường chuyên, nội dung được tham khảo từ nhiều nguồn, Nếu bạn thấy hay hoặc cần thông tin gì vui lòng để lại comment bình luận

Luyện thi vào lớp 10 thpt
đề thi số 1
Phần ii ( tự luận)
Câu 13: (1,5 điểm) Tìm điều kiện xác định và rút gọn biểu thức P : P Câu 14: (1,5 điểm)
a) Hãy cho hai đường thẳng cắt nhau tại một điểm A trên trục hoành. Vẽ hai đường thẳng đó. b) Giả sử giao điểm thứ hai của hai đường thẳng đó với trục tung là B, c). Tính các khoảng cách AB, BC, CA và diện tích tam giác ABC.
Câu 15: (3 điểm) Cho tam giác ABC vuông tại A , BC = 5, AB = 2AC
a) Tính AC b) Từ A hạ đường cao AH, trên AH lấy một điểm I sao cho AI = AH. Từ C kẻ Cx // AH. Gọi giao điểm của BI với Cx là D. Tính diện tích của tứ giác AHCD. c) Vẽ hai đường tròn (B, AB) và (C, AC). Gọi giao điểm khác A của hai đường tròn này là E. Chứng minh CE là tiếp tuyến của đườn tròn (B).
đề thi số 2
Phần ii ( tự luận)
Câu 13: (1,5 điểm) Giải phương trình:
Câu 14: (1,5 điểm) Cho hàm số
a) Với giá trị nào của m thì (1) là hàm số bậc nhất? b) Với điều kiện của câu a, tìm các giá trị của m và n để đồ thị hàm số (1) trùng với đường thẳng y – 2x + 3 = 0?
Câu 15: (3 điểm) Cho tam giác ABC vuông tại A. Đường cao AH chia cạnh huyền thành hai đoạn: BH = 4cm; CH = 9cm. Gọi D, E theo thứ tự đó là chân đường vuông góc hạ từ H xuống AB và AC.
a) Tính độ dài đoạn thẳng DE? b) Chứng minh đẳng thức AE.AC = AD.AB? c) Gọi các đường tròn (O), (M), (N) theo thứ tự ngoại tiếp các tam giác ABC, DHB, EHC. Xác định vị trí tương đối giữa các đường tròn: (M) và (N); (M) và (O); (N) và (O)? d) Chứng minh DE là tiếp tuyến chung của hai đường tròn (M) và (N) và là tiếp tuyến của đường tròn đường kính MN?
đề thi số 3
Phần ii ( tự luận)
Câu 15: (2 điểm) Giải bài toán sau bằng cách lập hệ phương trình: Hai vòi nước cùng chảy vào một cái bể không có nước trong 4 giờ 48 phút sẽ đầy bể. Nếu mở vòi thứ nhất trong 3 giờ và vòi thứ hai trong 4 giờ thì được bể nước. Hỏi mỗi vòi chảy một mình thì trong bao lâu mới đầy bể?
Câu 16: (1 điểm) Cho phương trình x2 – (2k – 1)x +2k -2 = 0 (k là tham số). Chứng minh rằng phương trình luôn luôn có nghiệm.
Câu 17: (3 điểm) Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm D khác A và B. Trên đường kính AB lấy điểm C và kẻ CH AD. Đường phân giác trong của góc DAB cắt đường tròn tại E và cắt CH tại F, đường thẳng DF cắt đường tròn tại N.
a) Chứng minh tứ giác AFCN nội tiếp được? b) Chứng minh ba điểm N, C, E thẳng hàng?
đề thi số 4
Phần ii ( tự luận)
Câu 13: (2,0 điểm) Chứng minh biểu thức A sau không phụ thuộc vào x:
A = (với x > 0)
Câu 14: (1,5 điểm) Cho hai đường thẳng :
y = -x ( ; y = (1 – m)x + 2 (m – 1) (
a) Vẽ đường thẳng b) Xác định giá trị của m để đường thẳng cắt đường thẳng tại điểm M có toạ độ (-1; 1). Với m tìm được hãy tính diện tích tam giác AOB, trong đó A và B lần lượt là giao điểm của đường thẳng với hai trục toạ độ Ox và Oy.
Câu 15: (3,5 điểm) Cho hai đường tròn (O) và (O’), tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài DE, D (O), E (O’). Kẻ tiếp tuyến chung trong tại A, cắt DE tại I. Gọi M là giao điểm của OI và AD, M là giao điểm của O’I và AE.
Tứ giác AMIN là hình gì? Vì sao? b) Chứng minh hệ thức IM.IO = IN.IO’ c) Chứng minh

Hỏi và đáp